where D is in g/cm<sup>3</sup> and T in  ${}^{\circ}K$ . The liquid densities at the melting and normal boiling points are as follows:

|                                 | Fe             | Ni    |
|---------------------------------|----------------|-------|
| $D_{\rm m.p.,}  ({\rm g/cm^3})$ | 7.015          | 7.905 |
| m.p., (°K)                      | 18 <b>0</b> 5° | 1728° |
| $D_{b.p.,}(g/cm^3)$             | 5.828          | 6.304 |
| b.p., (°K)                      | 3160°          | 3110° |

The equation of the rectilinear diameter, in the same units, are as follows:

$$D_{\phi}^{\text{Fe}} = 4.309 - 4.42 \times 10^{-4} T$$

and

$$D_{\phi}^{\text{Ni}} = 4.954 - 5.795 \times 10^{-4} T$$

The liquid range diagrams of the two metals were constructed and that of iron is given in Fig. 1. The critical temperatures of Fe, estimated at 6750°K, and of Ni,



estimated at 6000°K, were based on the ratio of  $D_{\rm b.p.}/D_{\rm crit.p.} \simeq 4.35$ , since this ratio is based on the liquid range diagram of many other metals<sup>(9)</sup>, i.e. Hg, Bi, Ag, Pb, Sn and Ga. However, if we base our estimates of critical temperatures on the law of corresponding states and the following reliable heats and entropies of vaporization<sup>(10)</sup> of iron and nickel:

(9) P. J. McGonigal, A. D. Kirshenbaum and A. V. Grosse, J. Phys. Chem., 66, 737 (1962).